

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	defcon 0.1 documentation

defcon

defcon is a set of UFO based objects optimized for use in font editing applications. The objects are built to be lightweight, fast and flexible. The objects are very bare-bones and they are not meant to be end-all, be-all objects. Rather, they are meant to provide base functionality so that you can focus on your application’s behavior, not object observing or maintaining cached data.

Basic Usage

defcon is very easy to use:

from defcon import Font
font = Font()
now do some stuff!

Concepts

	Notifications

	Subclassing

	External Changes

	Representations

Objects

	Font

	Glyph

	Contour

	Component

	Point

	Anchor

	Info

	Kerning

	Groups

	Features

	Lib

	Unicode Data

	NotificationCenter

	BaseObject

Dependencies

	FontTools [http://fonttools.sf.net]

	RoboFab [http://robofab.com]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Notifications

defcon uses something similar to the Observer Pattern [http://en.wikipedia.org/wiki/Observer_pattern] for inter-object communication and object observation. This abstraction allows you to cleanly listen for particular events happening in particular objects. You don’t need to wire up lots of hooks into the various objects or establish complex circular relationships thoughout your interface code. Rather, you register to be notified when something happens in an object. In defcon, these are referred to as notifications. For example, I want to be notified when the my font changes:

class MyInterface(object):

 # random code here, blah, blah.

 def setGlyph(self, glyph):
 glyph.addObserver(self, "glyphChangedCallback", "Glyph.Changed")

 def glyphChangedCallback(self, notification):
 glyph = notification.object
 print "the glyph (%s) changed!" % glyph.name

When the glyph is changed in anyway by anyone, it posts a “Glyph.Changed” notification to all registered observers. My method above is called when this happens and I can react as needed.

The NotificationCenter object implements all of this. However, all objects derived from dercon.BaseObject have a simplified API for tapping into notifications. Each object posts its own unique notifications, so look at the relevant reference for information about the available notifications.

Don’t Forget removeObserver

The only real gotcha in this is that you must remove the observer from the observed object when the observation is no longer needed. If you don’t do this and the observed object is changed, it will try to post a notification to the object you have discarded. That could lead to trouble.

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Subclassing

The defcon objects are built to have basic functionality. Your application can, and should, have its own functionality that is not part of the standard defcon repertoire. The objects are built with this in mind – they are built to be subclassed and extended. This is done easily:

from defcon import Glyph

class MyCustomGlyph(Glyph):

 def myCustomMethod(self):
 # do something to the glyph data

When it is time to load a font, you pass this custom class to the Font object:

from defcon import Font

font = Font(glyphClass=MyCustomGlyph)

When a glyph is loaded, the glyph class you provided will be used to create the glyph object.

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

External Changes

It may be advantagious for your application to notice changes to a UFO that were made outside of your application. the Font object can help you with this. This object has a testForExternalChanges() method. This method will compare the data that has been loaded into the font, glyphs, etc. with the data in the UFO on disk. It will report anything that is different from when the UFO was last loaded/saved.

To do this in a relatively effecient way, it stores the modification data and raw text of the UFO file inside the object. When the testForExternalChanges() method is called, the modification date of the UFO file and the stored modification date are compared. A mismatch between these two will trigger a comparison between the raw text in the UFO file and the stored raw text. This helps cut down on a significant number of false positives.

The testForExternalChanges() method will return a dictionary describing what could have changed. You can then reload the data as appropriate. The Font object has a number of reload methods specifically for doing this.

Scanning Scheduling

defcon does not automatically search for changes, it is up to the application to determine when the scanning should be performed. The scanning can be an expensive operation, so it is best done at key moments when the user could have done something outside of your application. A good way to do this is to catch the event in which your application/document has been selected after being inactive.

Caveats

There are a couple of caveats that you should keep in mind:

	If the object has been modified and an external change has happened, the object is considered to be the most current data. External changes will be ignored. This may change in the future. I’m still thinking this through.

	The font and glyph data is loaded only as needed by defcon. This means that the user could have opened a font in your application, looked at some things but not the “X” glyph, switched out of your application, edited the GLIF file for the “X” glyph and switched back into your application. At this point defcon will not notice that the “X” has changed because it has not yet been loaded. This probably doesn’t matter as when the “X” is finally loaded the new data will be used. If your application needs to know the exact state of all objects when the font is first created, preload all font and glyph data.

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Representations

One of the painful parts of developing an app that modifies glyphs is managing the visual representation of the glyphs. When the glyph changes, all representations of it in cached data, the user interface, etc. need to change. There are several ways to handle this, but they are all cumbersome. defcon gives you a very simple way of dealing with this: representations and representation factories.

Representations and Representation Factories

A representation is an object that represents a glyph. As mentioned above, it can be a visual representation of a glyph, such as a NSBezierPath. Representations aren’t just limited to visuals, they can be any type of data that describes a glyph or something about a glyph, for example a string of GLIF text, a tree of point location tuples or anything else you can imagine. A representation factory is a function that creates a representation. You don’t manage the representations yourself. Rather, you register the factory and then ask the glyphs for the representations you need. When the glyphs change, the related representations are destroyed and recreated as needed.

Example

As an example, here is a representation factory that creates a NSBezierPath representation:

def NSBezierPathFactory(glyph, font):
 from fontTools.pens.cocoaPen import CocoaPen
 pen = CocoaPen(font)
 glyph.draw(pen)
 return pen.path

To register this factory, you do this:

from defcon import addRepresentationFactory
addRepresentationFactory("NSBezierPath", NSBezierPathFactory)

Now, when you need a representation, you simply do this:

path = glyph.getRepresentation("NSBezierFactory")

Not only do you only have to register this once to be able get the representation for all glyphs, the representation is always up to date. So, if you change the outline in the glyph, all you have to do to get the updated representation is:

path = glyph.getRepresentation("NSBezierFactory")

Implementation Details

Representation Factories

Representation factories should be functions that accept at least two arguments. The first argument is always a glyph and the second argument is always a font. After that, you are free to define any keyword arguments you need. You must register the factory with the addRepresentationFactory function. When doing this, you must define a unique name for your representation. The recommendation is that you follow the format of “applicationOrPackageName.representationName” to prevent conflicts. Some examples:

addRepresentationFactory("MetricsMachine.groupEditorGlyphCellImage", groupEditorGlyphCellImageFactory)
addRepresentationFactory("Prepolator.previewGlyph", previewGlyphFactory)

Representations

Once the factory has been registered, glyphs will be able to serve the images. You can get the representation like this:

image = glyph.getRepresentation("MetricsMachine.groupEditorGlyphCellImage")

You can also pass keyword arguments when you request the representation. For example:

image = glyph.getRepresentation("MetricsMachine.groupEditorGlyphCellImage", cellSize=(40, 40))

These keyword arguments will be passed along to the representation factory. This makes it possible to have very dynamic factories.

All of this is highly optimized. The representation will be created the first time you request it and then it will be cached within the glyph. The next time you request it, the cached representation will be returned. If the glyph is changed, the representation will automatically be destroyed. When this happens, the representation will not be recreated automatically. It will be recreated the next time you ask for it.

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Font

See also

	Notifications:

	The Font object uses notifications to notify observers of changes.

	External Changes:

	The Font object can observe the files within the UFO for external modifications.

Tasks

File Operations

	Font

	save()

	path

	ufoFormatVersion

	testForExternalChanges()

	reloadInfo()

	reloadKerning()

	reloadGroups()

	reloadFeatures()

	reloadLib()

Sub-Objects

	info

	kerning

	groups

	features

	lib

	unicodeData

Glyphs

	Font

	newGlyph()

	insertGlyph()

	keys()

Reference Data

	glyphsWithOutlines

	componentReferences

	bounds

	controlPointBounds

Changed State

	dirty

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Font

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Glyph

See also

	Notifications:

	The Glyph object uses notifications to notify observers of changes.

	Representations:

	The Glyph object can maintain representations of various arbitrary types.

Tasks

Name and Unicodes

	name

	unicodes

	unicode

Metrics

	leftMargin

	rightMargin

	width

Reference Data

	bounds

	controlPointBounds

General Editing

	clear()

	move()

Contours

	Glyph

	clearContours()

	appendContour()

	insertContour()

	contourIndex()

	autoContourDirection()

Components

	components

	clearComponents()

	appendComponent()

	componentIndex()

	insertComponent()

Anchors

	anchors

	clearAnchors()

	appendAnchor()

	anchorIndex()

	insertAnchor()

Hit Testing

	pointInside()

Pens and Drawing

	getPen()

	getPointPen()

	draw()

	drawPoints()

Representations

	getRepresentation()

	hasCachedRepresentation()

	representationKeys()

	destroyRepresentation()

	destroyAllRepresentations()

Changed State

	dirty

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Glyph

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Contour

See also

	Notifications:

	The Contour object uses notifications to notify observers of changes.

Tasks

Reference Data

	bounds

	controlPointBounds

	open

Direction

	clockwise

	reverse()

Points

	Contour

	index()

	onCurvePoints

	setStartPoint()

Segments

	segments

	removeSegment()

	positionForProspectivePointInsertionAtSegmentAndT()

	splitAndInsertPointAtSegmentAndT()

Hit Testing

	pointInside()

Drawing

	draw()

	drawPoints()

Changed State

	dirty

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Contour

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Component

See also

	Notifications:

	The Component object uses notifications to notify observers of changes.

Tasks

Reference Data

	bounds

	bounds

Properties

	baseGlyph

	transformation

Hit Testing

	pointInside()

Drawing

	draw()

	drawPoints()

Changed State

	dirty

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Component

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Point

Note

This object is not a subclass of BaseObject and therefore it does not produce notifications or have any parent attributes. This may change in the future.

Tasks

Position

	x

	y

Type

	segmentType

	smooth

Move

	move

Point

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Anchor

See also

	Notifications:

	The Anchor object uses notifications to notify observers of changes.

Tasks

Position

	x

	y

Name

	name

Move

	move

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Anchor

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Info

See also

	Notifications:

	The Info object uses notifications to notify observers of changes.

Tasks

Generic Identification

	familyName

	styleName

	styleMapFamilyName

	styleMapStyleName

	versionMajor

	versionMinor

	year

Generic Legal

	copyright

	trademark

Generic Dimensions

	unitsPerEm

	descender

	xHeight

	capHeight

	ascender

	italicAngle

Generic Miscellaneous

	note

OpenType head Table

	openTypeHeadCreated

	openTypeHeadLowestRecPPEM

	openTypeHeadFlags

OpenType hhea Table

	openTypeHheaAscender

	openTypeHheaDescender

	openTypeHheaLineGap

	openTypeHheaCaretSlopeRise

	openTypeHheaCaretSlopeRun

	openTypeHheaCaretOffset

OpenType name Table

	openTypeNameDesigner

	openTypeNameDesignerURL

	openTypeNameManufacturer

	openTypeNameManufacturerURL

	openTypeNameLicense

	openTypeNameLicenseURL

	openTypeNameVersion

	openTypeNameUniqueID

	openTypeNameDescription

	openTypeNamePreferredFamilyName

	openTypeNamePreferredSubfamilyName

	openTypeNameCompatibleFullName

	openTypeNameSampleText

	openTypeNameWWSFamilyName

	openTypeNameWWSSubfamilyName

OpenType OS/2 Table

	openTypeOS2WidthClass

	openTypeOS2WeightClass

	openTypeOS2Selection

	openTypeOS2VendorID

	openTypeOS2Panose

	openTypeOS2FamilyClass

	openTypeOS2UnicodeRanges

	openTypeOS2CodePageRanges

	openTypeOS2TypoAscender

	openTypeOS2TypoDescender

	openTypeOS2TypoLineGap

	openTypeOS2WinAscent

	openTypeOS2WinDescent

	openTypeOS2Type

	openTypeOS2SubscriptXSize

	openTypeOS2SubscriptYSize

	openTypeOS2SubscriptXOffset

	openTypeOS2SubscriptYOffset

	openTypeOS2SuperscriptXSize

	openTypeOS2SuperscriptYSize

	openTypeOS2SuperscriptXOffset

	openTypeOS2SuperscriptYOffset

	openTypeOS2StrikeoutSize

	openTypeOS2StrikeoutPosition

	openTypeVheaVertTypoAscender

	openTypeVheaVertTypoDescender

	openTypeVheaVertTypoLineGap

	openTypeVheaCaretSlopeRise

	openTypeVheaCaretSlopeRun

	openTypeVheaCaretOffset

Postscript

	postscriptFontName

	postscriptFullName

	postscriptSlantAngle

	postscriptUniqueID

	postscriptUnderlineThickness

	postscriptUnderlinePosition

	postscriptIsFixedPitch

	postscriptBlueValues

	postscriptOtherBlues

	postscriptFamilyBlues

	postscriptFamilyOtherBlues

	postscriptStemSnapH

	postscriptStemSnapV

	postscriptBlueFuzz

	postscriptBlueShift

	postscriptBlueScale

	postscriptForceBold

	postscriptDefaultWidthX

	postscriptNominalWidthX

	postscriptWeightName

	postscriptDefaultCharacter

	postscriptWindowsCharacterSet

Macintosh FOND Resource

	macintoshFONDFamilyID

	macintoshFONDName

Info

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Kerning

See also

	Notifications:

	The Kerning object uses notifications to notify observers of changes.

Tasks

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Kerning

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Groups

See also

	Notifications:

	The Groups object uses notifications to notify observers of changes.

Tasks

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Groups

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Features

See also

	Notifications:

	The Features object uses notifications to notify observers of changes.

Tasks

Feature Text

	text

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Features

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Lib

See also

	Notifications:

	The Lib object uses notifications to notify observers of changes.

Tasks

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

Lib

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

Unicode Data

See also

	Notifications:

	The UnicodeData object uses notifications to notify observers of changes.

Types of Values

This object works with three types of Unicode values: real, pseudo and forced. A real Unicode value is the value assigned in the glyph object. A pseudo-Unicode value is an educated guess about what the Unicode value for the glyph could be. This guess is made by splitting the suffix, if one exists, off of the glyph name and then looking up the resulting base in the UnicodeData object. If something is found, the value is the pseudo-Unicode value. A forced-Unicode value is a Private Use Area value that is temporaryily mapped to a glyph in the font. These values are stored in the font object only as long as the font is active. They will not be saved into the font. Note: Forced-Unicode values are very experimental. They should not be relied upon.

Tasks

Value From Glyph Name

	unicodeForGlyphName

	pseudoUnicodeForGlyphName

	forcedUnicodeForGlyphName

Glyph Name from Value

	glyphNameForForcedUnicode

	glyphNameForUnicode

Glyph Descriptions

	blockForGlyphName

	categoryForGlyphName

	scriptForGlyphName

Open and Closed Relatives

	closeRelativeForGlyphName

	openRelativeForGlyphName

Decomposition

	decompositionBaseForGlyphName

Sorting Glyphs

	sortGlyphNames()

Notifications

	dispatcher

	addObserver()

	removeObserver()

	hasObserver()

Parent

	getParent()

	setParent()

UnicodeData

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	defcon 0.1 documentation

NotificationCenter

Direct creation of and interation with these objects will most likely be rare as they are automatically handled by BaseObject.

NotificationCenter

Notification

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	defcon 0.1 documentation

BaseObject

The main objects in defcon all subclass these objects.

See also

	NotificationCenter

	The base object uses notifications to notify observers about changes. The API for subscribing/unsubscribing to notifications are detailed below. Some familiarity with the NotificationCenter might be helpful.

BaseObject

BaseDictObject

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	defcon 0.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 defcon	

 	
 	
 defcon.objects.base	

 	
 	
 defcon.tools.notifications	

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	defcon 0.1 documentation

Index

 D

D

 	

 	defcon (module), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	defcon.objects.base (module)

 	

 	defcon.tools.notifications (module)

 Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		defcon 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009, Type Supply LLC.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

